on p-soluble groups with a generalized p-central or powerful sylow p-subgroup

نویسندگان

evgeny khukhro

چکیده

let $g$ be a finite $p$-soluble group‎, ‎and $p$ a sylow $p$-sub-group of $g$‎. ‎it is proved‎ ‎that if all elements of $p$ of order $p$ (or of order ${}leq 4$ for $p=2$) are‎ ‎contained in the $k$-th term of the upper central series of $p$‎, ‎then the $p$-length of‎ ‎$g$ is at most $2m+1$‎, ‎where $m$ is the greatest integer such that‎ $p^m-p^{m-1}leq k$‎, ‎and the exponent of the image of $p$ in $g/o_{p',p}(g)$ is at most‎ ‎$p^m$‎. ‎it is also proved that if $p$ is a powerful‎ ‎$p$-group‎, ‎then the $p$-length of $g$ is equal to 1‎.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

on $p$-soluble groups with a generalized $p$-central or powerful sylow $p$-subgroup

let $g$ be a finite $p$-soluble group‎, ‎and $p$ a sylow $p$-subgroup of $g$‎. ‎it is proved‎ ‎that if all elements of $p$ of order $p$ (or of order ${}leq 4$ for $p=2$) are‎ ‎contained in the $k$-th term of the upper central series of $p$‎, ‎then the $p$-length of‎ ‎$g$ is at most $2m+1$‎, ‎where $m$ is the greatest integer such that‎ ‎$p^m-p^{m-1}leq k$‎, ‎and the exponent of the image of $p$...

متن کامل

A Note on Absolute Central Automorphisms of Finite $p$-Groups

Let $G$ be a finite group. The automorphism $sigma$ of a group $G$ is said to be an absolute central automorphism, if for all $xin G$, $x^{-1}x^{sigma}in L(G)$, where $L(G)$ be the absolute centre of $G$. In this paper, we study  some properties of absolute central automorphisms of a given finite $p$-group.

متن کامل

Irreducible characters of Sylow $p$-subgroups of the Steinberg triality groups ${}^3D_4(p^{3m})$

‎‎Here we construct and count all ordinary irreducible characters of Sylow $p$-subgroups of the Steinberg triality groups ${}^3D_4(p^{3m})$.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
international journal of group theory

ناشر: university of isfahan

ISSN 2251-7650

دوره 1

شماره 2 2012

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023